If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+9x-162=0
a = 10; b = 9; c = -162;
Δ = b2-4ac
Δ = 92-4·10·(-162)
Δ = 6561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6561}=81$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-81}{2*10}=\frac{-90}{20} =-4+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+81}{2*10}=\frac{72}{20} =3+3/5 $
| (7-x)²+x=25 | | (7-x)^2+x=25 | | 5x/8=2 | | 3x-3=7+3x | | 11(5-4x)=7(5-6x) | | |3y+2|-1/2y=-6 | | 2(-x+6)=20 | | y+1/6=y-2 | | -16t^2+64t+960=700 | | 7.1x+6.1=x | | 5z-2/3=z | | 5x-6x+30-7x=2x+10-7x+5x-20 | | -2x+(3)=9 | | 1/5x+1/5x=40 | | 1/5x+15x=40 | | 8(-5)-3y=-22 | | -16t^2+64t+260=0 | | y=2.5(2,5)-1.5 | | 4t^2+16t+65=0 | | (4x-37)=49 | | 9a+12=6a | | 49=(4x-37) | | 7x+21-4x+13+2x=41-5x-7+6x | | 2/3x+9=9/4x-5 | | 4x-16=64/4 | | 7x-21-4x+13+2x=41-5x-7×6x | | 6y+23=13y-5 | | 5e+19=11e-5 | | 5x-17+3x-5=6x-7-8x | | 4000=9004/x | | x=19.3/3.1415 | | 5c+12=8c |